

CAPTEURS ET CHAÎNE D'ACQUISITION DE DONNÉES

Chap1 Principes généraux des capteurs

Plan:

- Généralités sur la mesure
- Métrologie et Qualité
- Chaîne de mesure : caractéristiques
- Capteurs et transmetteurs

Mesurage [Measurement]

Ensemble d'opérations ayant pour but de déterminer une valeur d'une grandeur.

Mesurande (m) [Measurand]

Grandeur particulière soumise à mesurage

Mesure (x)

Évaluation d'une grandeur par comparaison à une autre grandeur de même nature prise pour unité

Pour plus d'information se rapporter au VIM

Grandeur (X)

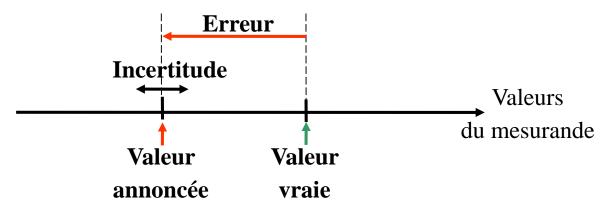
Paramètre à contrôler lors de l'élaboration ou du transfert d'un produit

(grandeurs conventionnelles, grandeurs physiques, grandeurs mesurable, grandeurs repérables)

<u>Incertitude dx</u> [Uncertainty]

Paramètre, associé au résultat d'un mesurage, qui caractérise la dispersion des valeurs qui pourraient raisonnablement être attribuées au mesurande.

$$x - dx < X < x + dx$$


<u>Valeur vraie</u> [true value]

Valeur compatible avec la définition d'une grandeur particulière donnée.

<u>Erreur</u> « absolue » [Error]

Résultat d'un mesurage moins la valeur vraie du mesurande, exprimée dans l'unité de la mesure:

e = Résultat de mesure - valeur vraie

Erreur relative [Relative error]

Rapport de l'erreur de mesure à une valeur vraie du mesurande

$$e_r = e/X, e_{r\%} = e_r .100$$

Exactitude de mesure (accuracy of measurement)

Étroitesse de l'accord entre le résultat d'un mesurage et une valeur vraie du mesurande.

N.B:

- 1. Le concept d'exactitude est qualitatif.
- 2. Le terme précision ne doit pas être utilisé pour exactitude.

Système de grandeurs [System of quantities]

Ensemble de grandeurs, dans le sens général, entre lesquelles il existe des relations définies.

Grandeur de base [Base quantity]

l'une des grandeurs qui, dans un système de grandeurs, sont admises par convention comme étant fonctionnellement indépendantes les unes des autres.

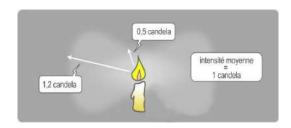
<u>Dimension d'une grandeur</u> [Dimension of quantity]

Expression qui représente une grandeur d'un système de grandeurs comme le produit de puissances de facteurs qui représentent les grandeurs de base de ce système.

Exemple: Système International d'unités:

mètre

kilogramme


seconde

ampère

mole

candela

- La quantité à mesurer est le mesurande (m) de grandeur X
- Le capteur convertit m en une grandeur électrique : la mesure (x)
- Le capteur est caractérisé par la relation x=f(X)
- L'expression f(X) est établie par une opération : l'étalonnage

Étalon [Etalon]

Réalisation matérielle d'un mesurande dont la valeur est connue avec une incertitude nulle (prototype primaire) ou avec une incertitude connue (étalon secondaire)

<u>Traçabilité</u> [Traceability]

Propriété du résultat d'un mesurage ou d'un étalon tel qu'il puisse être relié à des références déterminées, généralement des étalon nationaux ou internationaux, par l'intermédiaire d'une chaîne ininterrompue de comparaisons ayant toutes des incertitudes déterminées.

Étalon primaire [Primary standard]

désigné ou largement reconnu comme présentant les plus hautes qualités métrologiques et dont la valeur est établie sans se référer à d'autres étalons de la même grandeur

Exemple: d'étalon

[http://cblog.eklablog.com]

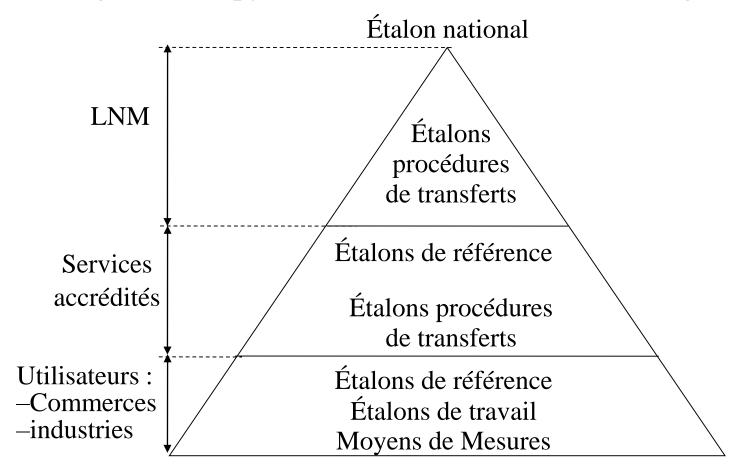
Le mètre étalon (1799 et en platine), le kilogramme et le litre Le mètre représente le dix-millionième du quart du méridien terrestre

Étalon de transfert [Transfer standard]

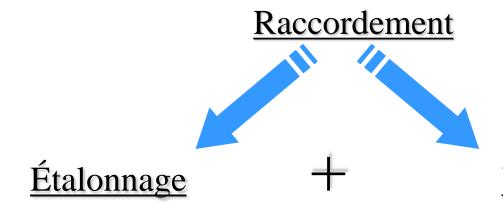
utilisé comme intermédiaire pour comparer entre eux deux étalons [=dispositif de transfert si l'intermédiaire ≠ étalon]

Étalon de référence [Reference standard]

de la plus haute qualité métrologique, disponible en un lieu ou une organisation dont dérivent les mesurages qui y sont faits


Étalon de travail [Working standard]

utilisé couramment pour étalonner ou contrôler des mesures matérialisées, des appareils de mesure ou des matériaux de référence.


Organisation pyramidale de la chaîne d'étalonnage

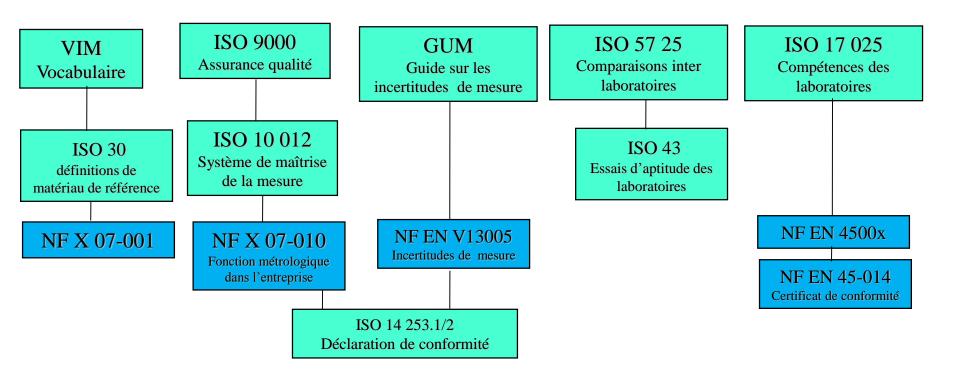
Certification Qualité

<u>Vérification</u>

En pratique, le plus souvent effectuée

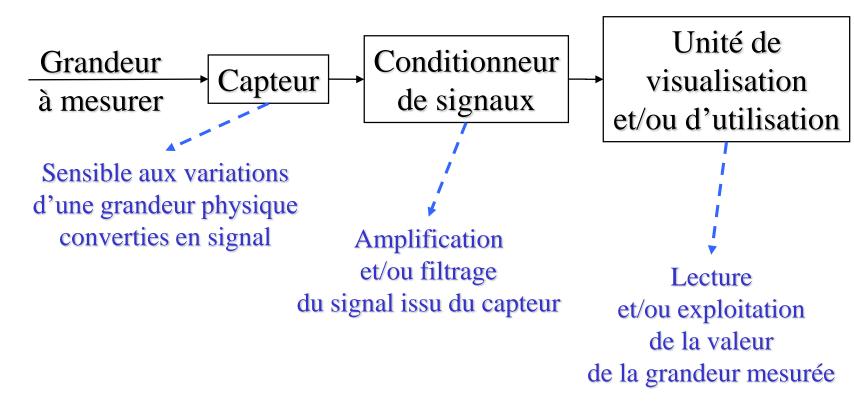
ISO 17025

Traçabilité de la chaîne d'étalonnage = Preuve du raccordement aux références nationales



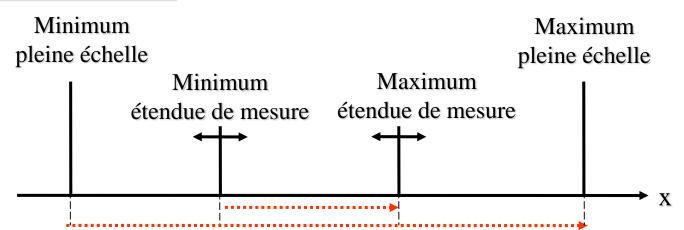
E. rue Gaetre Granter -	LABORATORIES DE PARIS 1. nei Garce Scham - 757/24 Peris-Cedex 15								
	Tile: - 01 40 43 37 00 - Piec: - 01 40 43 37 37								
Commende : N° AC	O9799 du 30/03/2007								
	CONST	TAT DE VE	RIFICA	TION					
		Nº H031687	1448						
DELIVRE A	ALLA FRANCE Z.1. du Bompas 49120 CHEMILLE								
IDENTIFICATION D	NTIFICATION DE L'INSTRUMENT			CONDITIONS DE VERIFICATION					
Odelgnation :	Thermomètre à dist	ation de meroure	no Norme ou texte de niférence : Décret n° 84-948 du 19 octobre 1964						
Constructeur	ALLA FRANCE		Precédure Interne de vérification : 545 T 05.45 et Doc. COFRAC LAB GTA 08						
Type :	Type: Echele 0°C / 35°C en 0 N° de série: 0 701 0 39°S			0.1°C Conditions d'environnement : Température ambiente : de 15 °C à 25 °C Humidité Rotative : de 35 % à 65 %					
Nº de série :				Date de la vérification : du 21/03/2007 au 23/03/2007					
CI C DNSTAT:			Date d'émission du constat : 04/04/2007						
a été constaté qu	e les corrections de l'instrum maximale tolèrée (EMT) defi-	nent (C) augmenté	es de l'incer	ritude d'étalonnage étargle U so					
		(C) + U ≤ EMT							
	Etendare 0 °C à 35 °C	EMT ± 0.1 %							
a document compr		2 42 7		1 Part Complities					
cutres				Commonwealth or Torres Taphyman Temperature Physiometric					
10 K				es della					
				Dominique JOUIN					

www.allafrance.com/



Principe

Aujourd'hui, la quasi-totalité des chaînes de mesure sont des chaînes <u>électroniques</u>



Définitions

Étendue de mesure

Ensemble des valeurs du mesurande pour lesquelles l'erreur d'un instrument de mesure est comprise entre des limites spécifiques

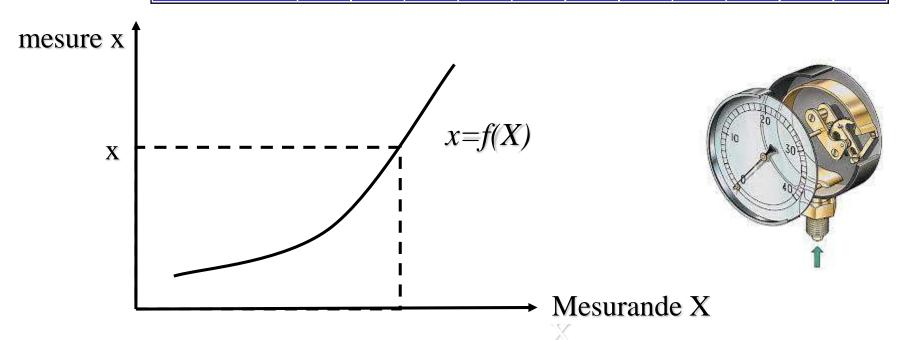
Pleine échelle : valeur maximale de l'étendue de mesure

Définitions

Rangeabilité = Étendue de mesure / Pleine échelle

Courbe d'étalonnage

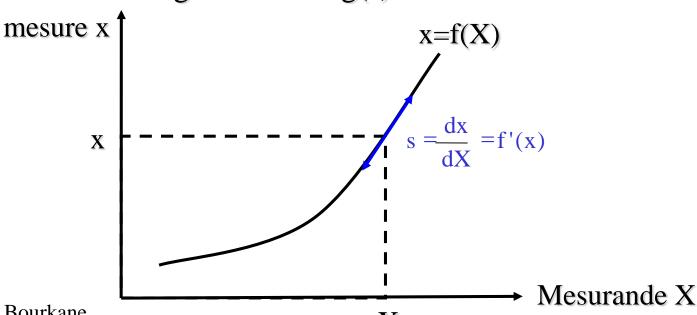
- Propre à chaque capteur, appareil, système...
- Permet de transformer la mesure brute en mesure corrigée
- Obtenue en soumettant l'instrument à une valeur vraie de la grandeur à mesurer



Définitions

Exemple Manomètre à tube de Bourdon

Gétalon(mBar)	0	100	200	300	400	500	600	700	800	900	1000
Gmesuré(mBar)	0	100	220	320	410	490	580	670	780	900	1000



Définitions Sensibilité (s)

 \triangleright Si f(x) est linéaire, s=constante, x=sX+x0

➤ Si x et X de même nature, s est sans dimension ; on parle alors de gaindB=20log(s)

Classe de précision

Résolution

(cas d'un appareil de mesure numérique)

Résolution =
$$\frac{\text{étendue de mesure}}{\text{nb de points de mesure}}$$

<u>Finesse</u>

Incidence de l'instrument de mesure sur le phénomène mesuré, d'autant plus grande que la perturbation est faible

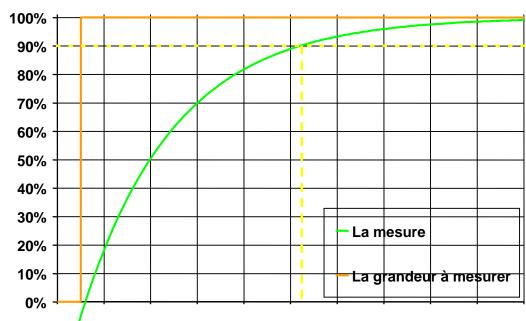
Rapidité - Temps de réponse

Aptitude de l'instrument à suivre les variations de la grandeur à mesurer

Electrical Specifications

DC specifications for U1271A, U1272A, U1273A and U1273AX

Function	Range	Resolution	C	Test current/		
			U1271A	U1272A	U1273A/U1273AX	Burden voltage
Voltage ¹	30 mV	0.001 mV		0.05 + 20	0.05 + 20	
	300 mV	0.01 mV	0.05 + 5	0.05 + 5	0.05 + 5	1.77
	3 V	0.0001 V	0.05 + 5	0.05 + 5	0.05 + 5	9223
	30 V	0.001 V	0.05 + 2	0.05 + 2	0.05 + 2	8==
	300 V	0.01 V	0.05 + 2	0.05 + 2	0.05 + 2	T alla :
	1 000 V	0.1 V	0.05 + 2	0.05 + 2	0.05 + 2	l ess :
	Z _{Low} (low input impedance) enabled, applicable for 1000 V range and resolution only	0.1 V	153	1+20	1 + 20	() ()
Resistance ³	30 0	0.001 Ω		0.2 + 10	0.2 + 10	0.65 mA
	300 D	0.01 Ω	0.2 + 5	0.2 + 5	0.2+5	0.65 mA
	3 kΩ	0.0001 kΩ	0.2 + 5	0.2 + 5	0.2 + 5	65 µA
	30 kΩ	0.001 kΩ	0.2 + 5	0.2 + 5	0.2 + 5	6.5 µA
	300 kΩ	0.01 kΩ	0.2 + 5	0.2 + 5	0.2 + 5	0.65 µA
	3 MΩ	0.0001 MΩ	0.6 + 5	0.6 + 5	0.6+5	93 nA/10 MΩ
	30 MΩ	0.001 MΩ	1.2 + 5	1.2 + 5	1.2+5	93 nA/10 MΩ
	100 MΩ	0.01 MΩ	2.0 +10			93 nA/10 MΩ
	300 MΩ	0.01 MΩ		2.0 + 10 @ < 100 MΩ 8.0 + 10 @ > 100 MΩ	2.0 + 10 @ < 100 MΩ 8.0 + 10 @ > 100 MΩ	93 nA/10 MΩ
	300 nS	0.01 nS	1 + 10	1 + 10	1 + 10	93 nA/10 MΩ
Current ³	300 µA	0.01 µA	0.2 + 5	0.2 + 3	0.2 + 5	< 0.04 V/100 Ω
	3000 µA	0.1 μΑ	0.2 + 5	0.2 + 3	0.2+5	< 0.4 V/100 D
	30 mA	0.001 mA	0.2 + 5	0.2 + 3	0.2+5	< 0.08 V/1 Ω
	300 mA	0.01 mA	0.2 + 5	0.2 + 3	0.2 + 5	< 1.00 V/1 Ω
	3 A	0.0001 A	0.3 +10	0.3 +10	0.3 + 10	< 0.1 V/0.01 Ω
	10 A	0.001 A	0.3 +10	0.3 +10	0.3 + 10	< 0.3 V/0.01 Ω
Diode Test ⁴	3 V	0.0001 V	0.5 + 5	0.5 + 5	0.5+5	Approximately 1 to 2 mA
	Auto	0.0001 V	155	0.5 + 5	0.5 + 5	Approximately 0.1 to 0.3 mA

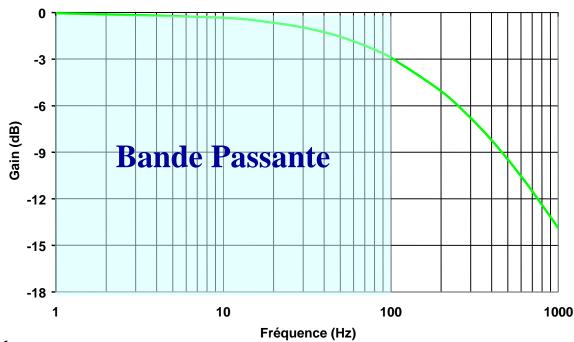

See notes on next page.

Temps de réponse à la montée t_m

Temps nécessaire pour que la mesure croisse de la valeur initiale jusque 90% de la variation totale de la grandeur à mesurer

Le Temps: un rôle important

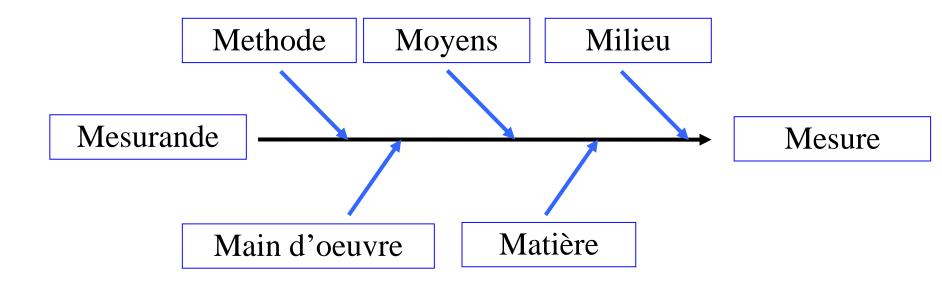
- A long terme (années):
 vieillissement ⇒ obligation d'étalonnages réguliers
- A moyen terme (minutes):
 dérives ⇒ effet des grandeurs d'influence
- A court terme (<<secondes): fluctuations ⇒ bruit


Le mesurande est donc une fonction du temps X(t), mais la réponse du capteur ne reproduira pas toujours la même dépendance temporelle

Bande Passante (ou réponse dynamique)

Bande de fréquence pour laquelle le gain_{dB} du capteur (i.e. $20\log(x/X)$) est compris entre 2 valeurs

Grandeurs d'influence et Compensation


- Toutes grandeurs physiques susceptibles de perturber la mesure : température, humidité, pression, champs magnétiques ou électriques, contraintes mécaniques...
- Les capteurs compensés limitent l'influence des grandeurs perturbatrices
- En fait, on a : $x = f(X, G_1, G_2, ..., G_n)$

Analyse du processus de la mesure

Méthode du diagramme d'Ishikawa

Répétabilité [Repeatability]

Etroitesse de l'accord entre les résultats des mesurages successifs du même mesurande, mesurages effectués dans la totalité des mêmes conditions de mesure.

Reproductibilité [Reproducibility]

Etroitesse de l'accord entre les résultats des mesurages du même mesurande, mesurages effectués en faisant varier les conditions mesure.

STATISTIQUES

Valeur moyenne

La mesure d'une même grandeur X a été répétée n fois, donnant les résultats de mesure x1, x2,... xn

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

STATISTIQUES

Écart type

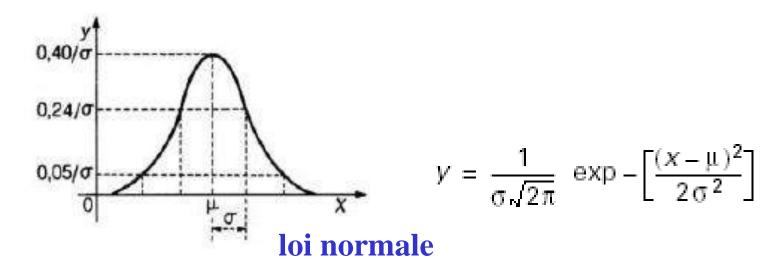
Indication sur la dispersion des résultats

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

STATISTIQUES

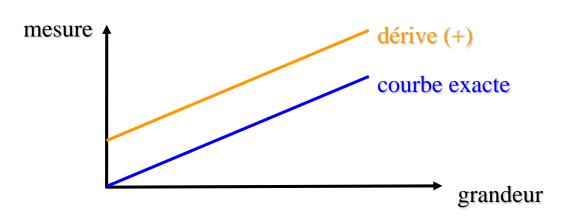
Écart type

Indication sur la dispersion des résultats

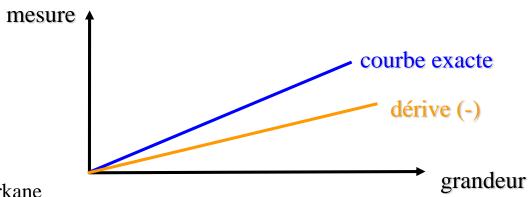

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

ERREURS

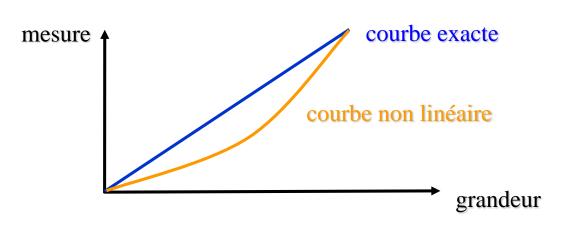
• Erreur aléatoire : composante de l'erreur de mesure qui, lors de plusieurs mesurages du même mesurande, varie de façon Imprévisible. Différents modèles de lois de probabilité peuvent être adoptés, en particulier :

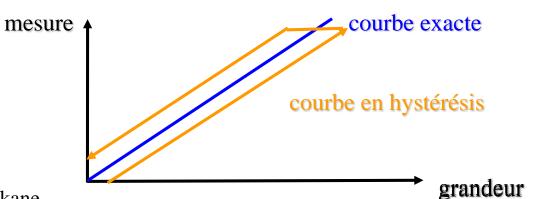

ERREURS

- Erreurs systématiques : reproductibles, liées à leur cause par une loi physique, susceptibles d'être éliminées par des corrections convenables. Les causes principales sont:
 - ♦ Erreurs sur la valeur d'une grandeur de référence;
 - ♦ Erreurs sur les caractéristiques du capteur;
 - ♦ Erreurs dues au mode ou conditions d'emploi
- ♦ Erreurs dans l'exploitation des données brutes de mesure.
- Erreurs accidentelles résultent d'une fausse manœuvre, d'un mauvais emploi ou de dysfonctionnement de l'appareil, non-prises en compte dans la détermination de la mesure

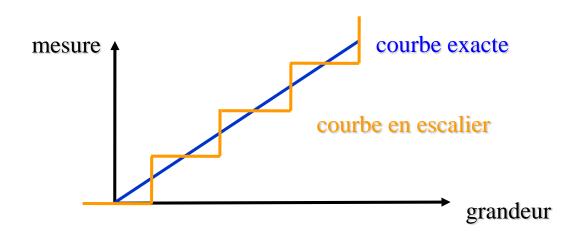


Erreur de zéro (Offset)

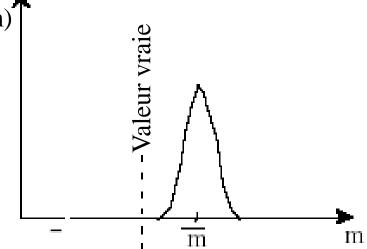

Erreur d'échelle (Gain)



Erreur de linéarité

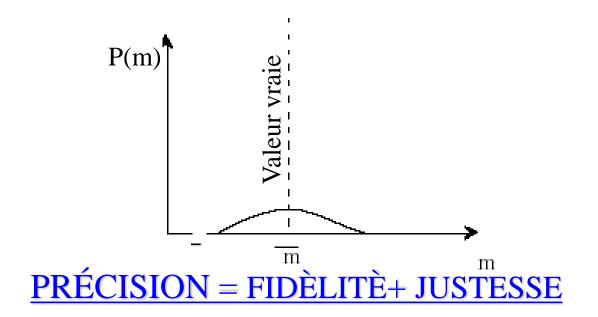

Phénomène d'hystérésis

Erreur de mobilité

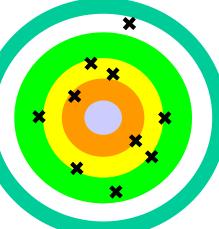


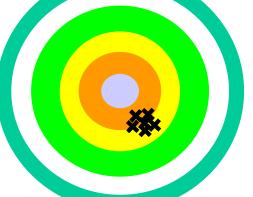
ERREURS & STATISTIQUES FIDÈLITÈ

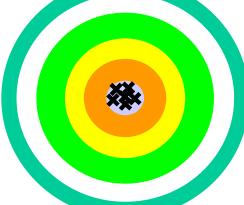
• Aptitude d'un instrument de mesure à donner des indications très voisines lors de l'application répétée du même mesurande dans les mêmes conditions de mesure P(m)



ERREURS & STATISTIQUES JUSTESSE

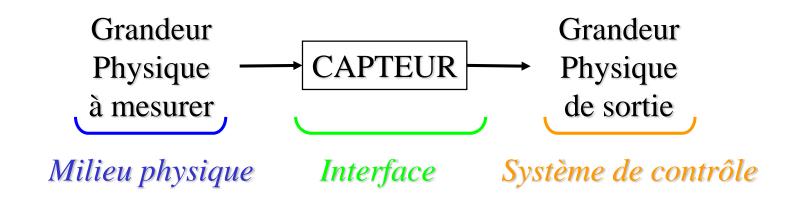

• Aptitude d'un instrument de mesure à donner des indications exemptes d'erreur systématique


ni fidèle ni juste


Juste

Fidèle

Précis



Capteur

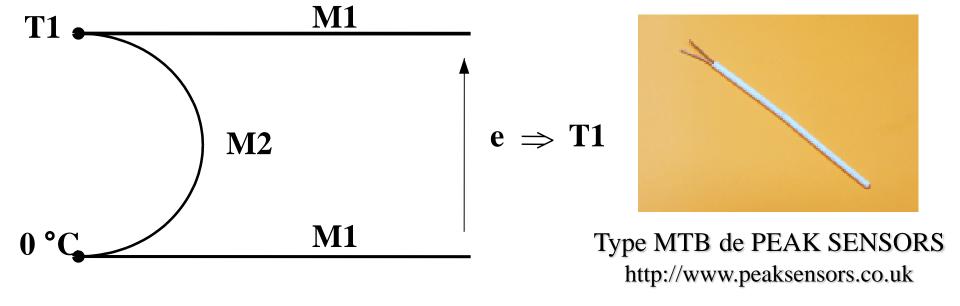
Organe de prélèvement d'information qui élabore à partir d'une grandeur physique (information entrante), une autre grandeur physique de nature différente (très souvent électrique)

Objectif: mesure et/ou commande

Capteur actif

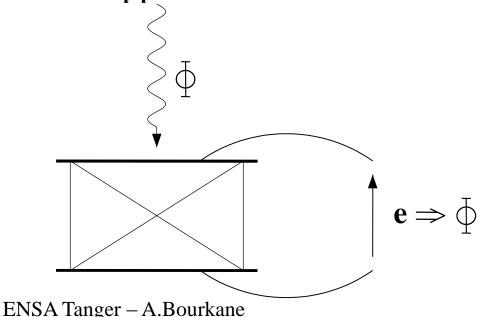
Fonctionnant en générateur : conversion de la grandeur physique à prélever (énergie thermique, mécanique, rayonnement...) en énergie électrique

- Effet thermoélectrique
- Effet pyroélectrique
- Effet piézoélectrique
- Effet d'induction électromagnétique
- Effet photoélectrique


- Effet photoémissif
- Effet photovoltaïque
- Effet Hall

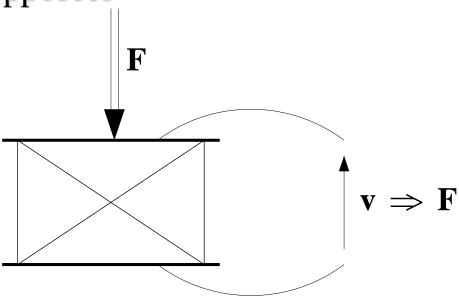
Effet thermoélectrique

Un circuit formé de 2 conducteurs de nature chimique différente, dont les jonctions sont à des températures T1 et T2 (0°C) par exemple, est le siège d'une force électromotrice



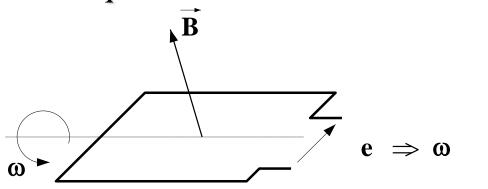
Effet pyroélectrique

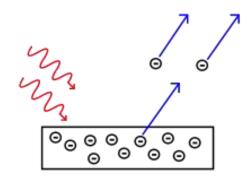
Certains cristaux dits pyroélectriques, le sulfate de triglycine par exemple, ont une polarisation électrique spontanée qui dépend de leur température; ils portent en surface des charges électriques proportionnelles à cette polarisation et de signe contraire sur les faces opposées.


Pyrométre portable de Winsensor http://www.winsensor.fr

Effet piézoélectrique

L'application d'une force et plus généralement d'une contrainte mécanique à certains matériaux dits piézoélectriques, le quartz par exemple, entraîne une déformation qui suscite l'apparition de charges électriques égales et de signes contraires sur les faces opposées





Effet d'induction électromagnétique

La variation du flux d'induction magnétique dans un circuit électrique induit une tension électrique

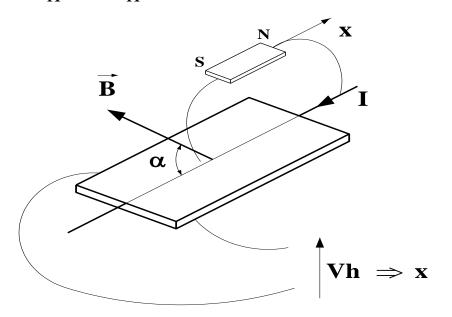
Effet photo-électrique

La libération de charges électriques dans la matière sous l'influence d'un rayonnement lumineux ou plus généralement d'une onde électromagnétique.

Effet photoémissif

Les électrons libérés sont émis hors de la cible éclairée et forment un courant collecté par application d'un champ électrique.

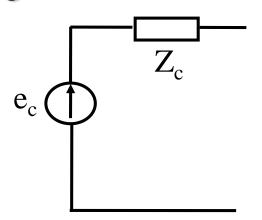
Des électrons et des trous sont libérer au voisinage d'une jonction PN illuminée; leur déplacement modifie la tension à ses bornes.



Effet Hall

Un matériau, généralement un semi-conducteur, est parcouru par un courant I et soumis à une induction B faisant un angle α avec le courant. Il apparaît, dans une direction perpendiculaire à l'induction et au courant une tension qui a pour expression :

$$V_H = K_H \cdot I \cdot B \cdot \sin \alpha$$


Grandeur physique à mesurer	Effet utilisé	Grandeur de sortie
Température	Thermoélectricité	Tension
	Pyroélectricité	Charge
Flux de rayonnement optique	Photo-émission	Courant
	Effet photovoltaïque	Tension
	Effet photo-électrique	Tension
Force	Piézo-électricité	Charge
Pression		
Accélération	Induction électromagnétique	Tension
Vitesse		
Position (Aimant)	Effet Hall	Tension
courant		

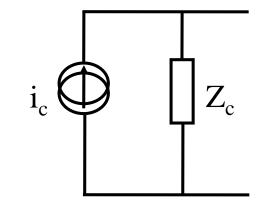




Schéma électrique équivalent

Le capteur actif, vu de sa sortie, se comporte comme un générateur.

Sa grandeur électrique de sortie peut être :

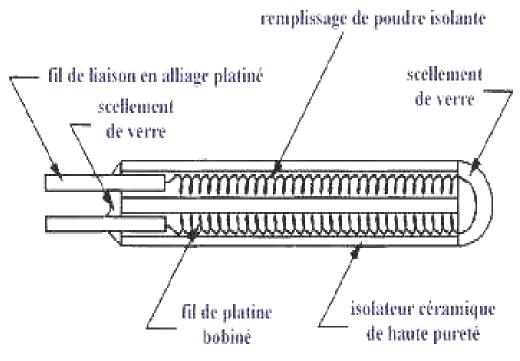
- une force électromotrice
- un courant
- une charge

Capteur passif

Matériau utilisé comme impédance, dont l'un des paramètres est sensible au mesurande. La variation d'impédance résulte soit des variations :

- des caractéristiques géométriques ou dimensionnelles du capteur
- des propriétés électrique des matériaux (ρ, ε, μ).

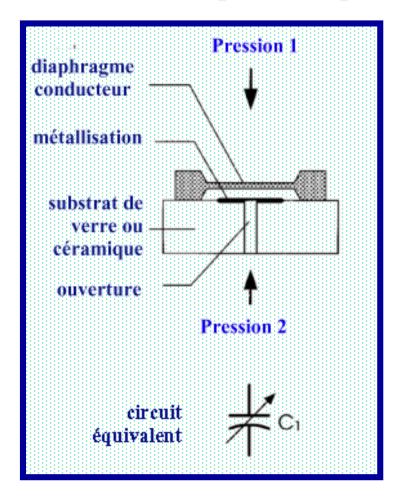
Mesurande.	Caractéristiques électriques sensibles.	Type de matériaux utilisés.
Température. Très basse température.	Résistivité. Constante diélectrique.	Métaux : Platine, nickel, cuivre, semi-conducteurs. Verres.
Flux de rayonnement optique.	Résistivité.	Semi-conducteurs.
Déformation.	Résistivité. Perméabilité magnétique.	Alliages de nickel, silicium dopé. Alliages ferromagnétiques.
Position. (Aimant)	Résistivité.	Matériaux magnéto-résistants : bismuth, antimoniure d'indium.
Humidité	Résistivité. Constante diélectrique.	Chlorure de lithium Alumine , polymères.
Niveau	Constante diélectrique.	Liquides isolants

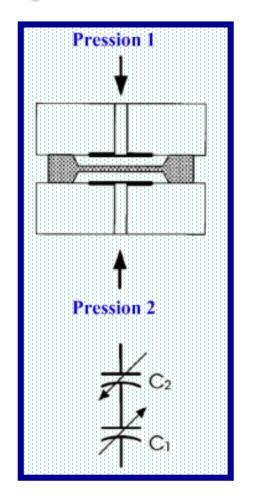

Capteur de température (Pt)

Calendar - Van Dusen

$$R(T) = R(0) \left[1 + AT + BT^{2} + C(T - 100)T^{3} \right]$$

EXEMPLE





Capteur de pression capacitif

Capteur passif

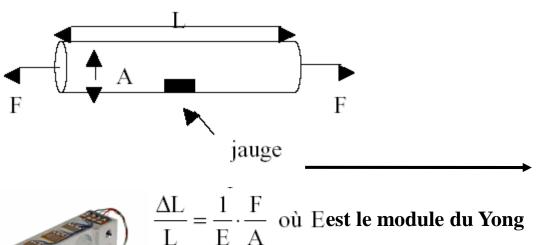
L'impédance d'un capteur passif et ses variations ne sont mesurables qu'en intégrant le capteur dans un circuit électrique, par ailleurs alimenté et qui est son conditionneur. Les types de conditionneurs les plus utilisés sont :

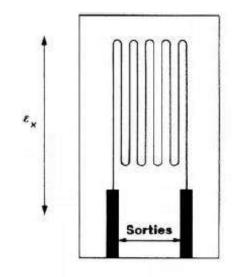
- Le montage potentiométrique (U, I)
- Le pont d'impédances (ΔZ)
- Le circuit oscillant (fréquence)
- L'amplificateur opérationnel (gain)

L'association capteur conditionneur détermine le signal électrique. De la constitution du conditionneur dépendent un certain nombre de performances de l'ensemble de mesure : *sensibilité*, *linéarité*, insensibilité à certaines *grandeurs d'influences*.

Corps d'épreuve et capteurs composites

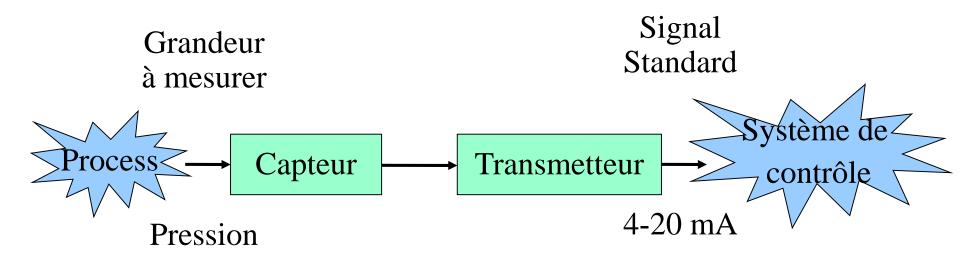
Corps d'épreuve dispositif qui, soumis au mesurande, produit une grandeur physique non électrique mesurable par un capteur


Grandeur
Physique
à mesurer
m primaire

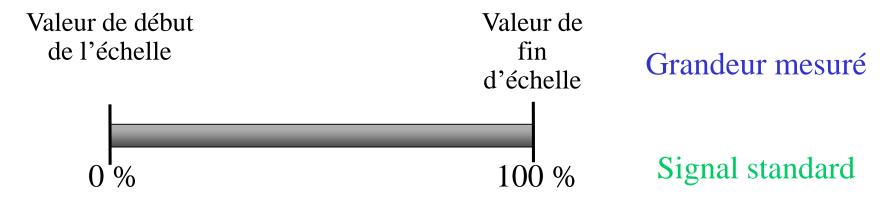


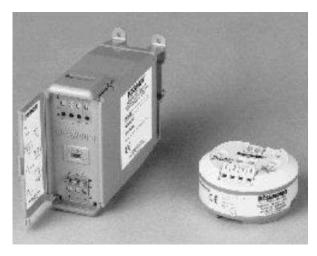
Exemple (Capteur Extensométrique)

Corps d'épreuve : Cylindre, lame fléchie, membrane, etc.


$$\frac{\Delta R}{R} = K \cdot \frac{\Delta L}{L} \text{ où } K$$
est le facteur de la jauge

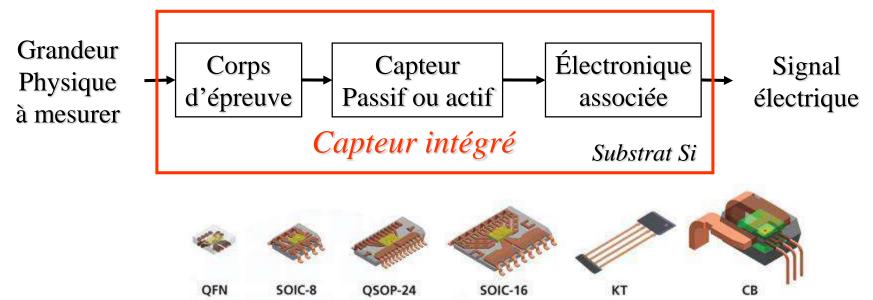
<u>Transmetteur</u>


C'est un dispositif qui converti le signal du capteur en un signal de mesure standard. Il fait le lien entre le capteur et le système de contrôle commande


Transmetteur

Le couple capteur + transmetteur réalise la relation linéaire suivante:

Le transmetteur possède au moins 2 paramètres à régler:

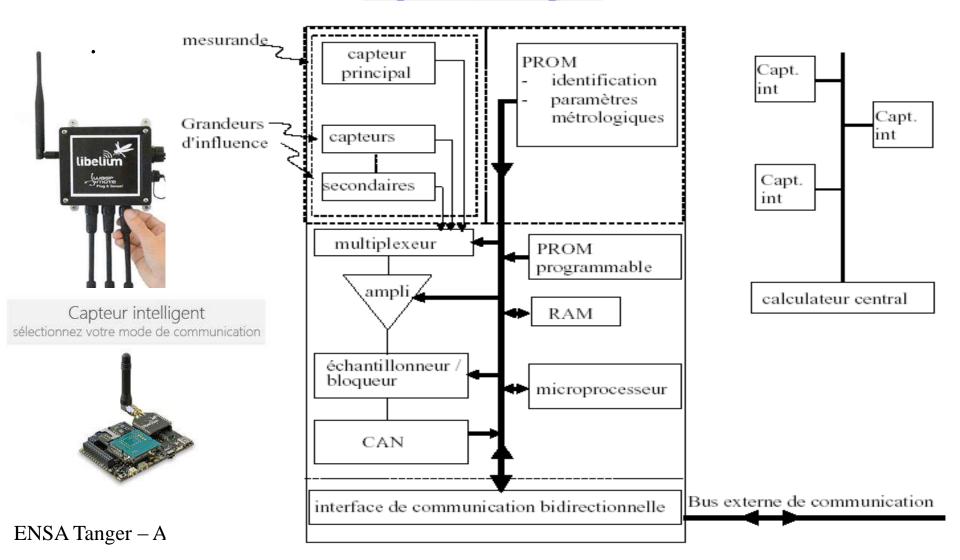

- Réglage du Zéro
- Réglage du gain

Capteur intégré

Réalisé par les techniques de la microélectronique, regroupe sur un substrat Silicium le corps d'épreuve, le capteur, et l'électronique de conditionnement

Capteur intelligent

On désigne par capteur intelligent l'ensemble de mesure constitué de deux parties :


- une chaîne de mesure pilotée par microprocesseur
- une interface de communication bidirectionnelle.

La chaîne de mesure comporte :

- le capteur principal (spécifique au mesurande),
- les capteurs secondaires propres aux grandeurs d'influence,
- les dispositifs classiques de numérisation de la réponse de chaque capteur,
- un microprocesseur pour la gestion de l'acquisition, la correction des effets des grandeurs d'influences, la linéarisation, le diagnostic des capteurs...

Capteur intelligent

Le Contrôle industriel

Les procédés industriels mettent en œuvre la mesure de centaines voire de *milliers de grandeurs différentes* pouvant *interagir* entre elles.

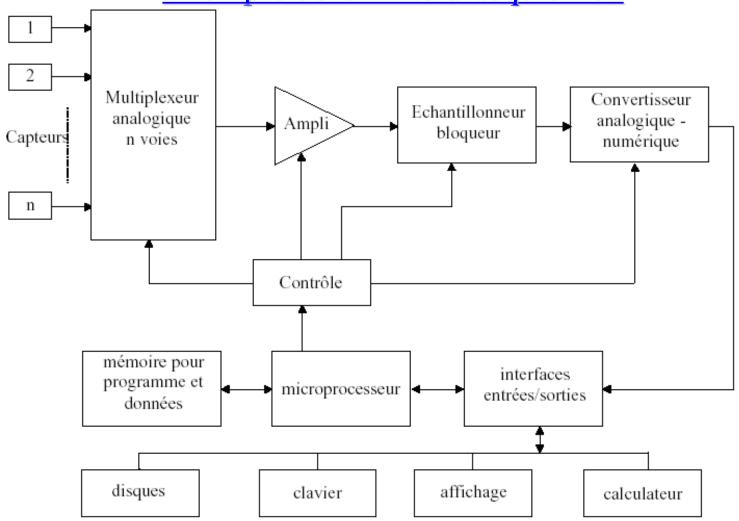
Leur contrôle n'est possible que par la mise en œuvre de chaînes d'acquisition pilotées par microprocesseurs via des lignes de transmission des informations

Le Contrôle industriel

Ce contrôle-commande peut cependant *détériorer le niveau de l'information* fournie à la source. L'étude complète d'une chaîne d'acquisition est donc nécessaire pour satisfaire le cahier des charges d'un procédé.

Éléments fondamentaux de la Chaîne d'acquisition

- Capteurs
- Conditionneurs : amplificateurs, filtres,...
- Multiplexeur
- Échantillonneur-bloqueur
- Convertisseur analogique-numérique
- Microprocesseur et liaisons externes
- Ligne de transmission / superviseur
- Actionneurs



Les 6 fonctions de la Chaîne d'acquisition

- Saisie du mesurande et transformation en une tension de mesure
- Traitement analogique pour éviter la dégradation du signal (bruit...)
- Sélection de la « bonne » tension de mesure
- Conversion de la tension sélectionnée en un signal numérique
- Coordination des opérations par un contrôleur
- Transmission à distance des opérations

Exemple de Chaîne d'acquisition

Conclusion

Le capteur idéal est celui pour lequel :

- on dispose d'une relation linéaire connue entre la grandeur à mesurer et le signal de sortie du capteur;
- les conditions d'emploi sont telles qu'aucune grandeur d'influence ne perturbe son fonctionnement
- aucun bruit parasite se superpose au signal utile

•

Situation exceptionnelle